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Abstract
Since its publication, the reptation quantum Monte Carlo algorithm of Baroni
and Moroni (1999 Phys. Rev. Lett. 82 4745) has been applied to several
important problems in physics, but its mathematical foundations are not well
understood. We show that their algorithm is not of typical Metropolis–Hastings
type, and we specify conditions required for the generated Markov chain to
be stationary and to converge to the intended distribution. The time-step bias
may add up, and in many applications it is only the middle of a reptile that
is the most important. Therefore, we propose an alternative, ‘no-compromise
reptation quantum Monte Carlo’ to stabilize the middle of the reptile.

PACS numbers: 02.70.Ss, 31.15.−p, 32.10.Dk

1. Reptation quantum Monte Carlo

In this paper, we show that Baroni and Moroni’s [1] (BM), [2] so-called reptation quantum
Monte Carlo algorithm is not of typical Metropolis–Hastings (MH) type, and we specify
conditions required for the generated Markov chain to be stationary and to converge to the
intended distribution:

�(X) ∝ �2
0(x0)Wε(xN |xN−1) · · ·Wε(x1|x0) exp(−S[X]). (1)

Here, Wε(xi+1|xi) is the transition probability for xi → xi+1 during the time interval
τ → τ + ε,X is a time-discretized path generated by the Langevin diffusion: x0x1· · ·xN,�0

is an inputted trial function and

S(X) = ε
(

1
2E(x0) + E(x1) + · · · + E(xN−1) + 1

2E(xN)
)

(2)

is the sum of local energies, E , accumulated over the path X.
Nevertheless, we prove that the Markov chain Xt is convergent to � by coupling (see,

e.g., [3]) Xt with a genuine MH algorithm Zt with a small modification. As a consequence of
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its convergence to �, the corresponding acceptance probability is

A[Y,X] = min{1,�(Y )W(X, Y )/�(X)W(Y,X)}
= min{1, exp(−S(Y ))/ exp(−S(X))}, (3)

BM’s equation (5). Here the �2
0 factors cancel, leaving just the ratio of exponentials. This

assumes microscopic reversibility, formally allowing one to ‘move’ the point at which �2
0 is

evaluated to the same location for reptiles X and Y. More importantly, we show that by relaxing
this assumption, we can stabilize the middle of the reptile, thereby somewhat ameliorating the
time-step bias when estimating quantities that are sensitive to that region, such as moments of
the sampled distribution.

This paper is organized as follows: in section 2 we show that the original reptation
quantum Monte Carlo algorithm is irreversible but by considering a similar MH algorithm in
section 3, it converges to the intended distribution, section 4. Since the time-step bias may
add up and in many applications it is only the middle of a reptile that is the most important, we
propose an algorithm, ‘no-compromise reptation quantum Monte Carlo’ to stabilize the middle
of the reptile, section 5. We conclude our paper with numerical examples to demonstrate the
power and limitations of this algorithm, section 6.

2. Irreversibility of the original reptation algorithm

The state space of the original algorithm is R
d(N+1) and a state of the algorithm is in the

form of a path x0x1 · · · xN , where xk ∈ R
d . The basic version of the algorithm with a fixed

M proceeds as follows: let X = x0x1· · ·xN be the current state of the Markov chain and
X = xNxN−1· · ·x0. With probability 1/2, a new reptile Y = y0y1· · ·yN is generated from X
with proposal density given by W 0(Y,X); otherwise, Y is generated from X with proposal
density given by W 0(Y,X), where

W 0(Y,X) = Wε(yN, yN−1)Wε(yN−1, yN−2), . . . , Wε(yN−M+1, yN−M), (4)

whenever y0 = xM, y1 = xM+1, . . . , yN−M = xN and 0 otherwise. The new reptile is accepted
with probability A[Y,X]. We denote the state of this Markov chain at time t by Xt .

This algorithm is irreversible, not a typical MH as claimed in the derivation of BM’s
equation (5). Figure 1 illustrates its steps (1) and (2), described below BM’s equation (7).
Given reptiles X, Y such that the proposal density W(X, Y ) 0, with 50% probability in case
(1b), W(Y,X) = 0. In this case, a typical MH algorithm will result in automatic rejection of
the proposed move instead of an acceptance with probability A[Y,X] in (3).

As a result, Xt is not convergent in general, unless we make the following assumptions.

• Micro-reversibility: for any x, y ∈ R
d ,

Wε(y, x)�0(x)2 = Wε(x, y)�0(y)2, (5)

a common assumption that we will relax.
• Symmetric initial distribution: X0 satisfies

P(X0 ∈ B) = P(X0 ∈ B) (6)

for any measurable set B, i.e., for any arbitrary state X, we have an equal probability
density of starting the algorithm from X and X.

Without reversibility, typical approaches to prove the convergence of Xt to � break down.
Instead, we compare it to a similar MH algorithm.
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Figure 1. Irreversibility of BM’s algorithm. � is at the (M + 1) st position on the initial path
(0). Shaded and dotted segments are sequences of length M. These are added to the end of the
path, after first time-reversing the path with 50% probability, and then deleting segments from its
head. Top: X → Y. Bottom: Y → X and Y → X̄, where X̄ is X with time-reversed ordering of
configurations. Neither (1b) → (2c) nor (1b) → (2d) recovers X with positive probability.

3. Metropolis–Hastings algorithm

We consider a reversible algorithm Zt that we denote as Metropolis–Hastings reptation
quantum Monte Carlo, which is very similar to Xt .

This algorithm proceeds as follows: let Z = z0z1· · ·zN be the current state of the Markov
chain. With probability 1/2, a new reptile Y = y0y1· · ·yN is generated from Z with proposal
density given by W 0(Y, Z) from (4), whenever y0 = zM, y1 = zM+1, . . . , yN−M = zN ;
otherwise, Y = y0y1· · ·yN is generated from Z with proposal density given by W 1(Y, Z),
where

W 1(Y, Z) = Wε(y0, y1)Wε(y1, y2), . . . ,Wε(yM−1, yM), (7)

whenever yM = z0, yM+1 = z1, . . . , yN = zN−M . Then the new reptile is accepted with
probability A[Y,Z] from (3) again.

Note that the proposed moves of Xt and Zt are identical if they both move forward with
W 0. If the proposed moves are backward, Xt will ‘flip’ the reptile and add to the tail, i.e., it is
adding to the head of the original reptile; whereas Zt will simply add to the head with the same
distribution without flipping the reptile. However, it is this subtle flipping that removes the
reversibility of the algorithm Xt , figure 1. On the other hand, Zt is a genuine MH algorithm
reversible with respect to �, i.e., the acceptance probability for a proposed move in the MH
algorithm targeting � can be simplified to A[Y,Z]. The key observation is that for all reptiles
Y,Z,

W 0(Y, Z) > 0 ⇔ W 1(Z, Y ) > 0,

eliminating the ‘automatic rejections’ in the original algorithm. With this property and micro-
reversibility (5), it is routine to check that the acceptance probabilities for the proposed moves
in both directions are in fact identical to A[Y,Z].

Finally, Zt is clearly �-irreducible and aperiodic and hence converges to � in a total
variation distance from any initial value of the chain (see, e.g., [4]).
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4. Convergence of the original reptation algorithm

Now to prove that Xt converges to � as well, observe that we can couple Xt and Zt together to
form a joint Markov chain (Xt , Zt ) on R

d(N+1) × R
d(N+1) such that X0 = Z0 with the crucial

property that

Xt = Zt or Xt = Zt

for all t. Intuitively, such a coupling is possible because the only difference between the two
chains is the subtle ‘flipping’. This construction is routine but somewhat technical (see [5]).
Besides, the symmetry of both algorithms and (6) imply

P(Xt ∈ B) = P(Xt ∈ B) and P(Zt ∈ B) = P(Zt ∈ B)

for any measurable B. So,

P(Xt ∈ B) = 1
2 [P(Xt ∈ B) + P(Xt ∈ B)]

= 1
2 [P(Xt ∈ B|Xt = Zt)P (Xt = Zt) + P(Xt ∈ B|Xt = Zt)P (Xt = Zt)

+ P(Xt ∈ B|Xt = Zt)P (Xt = Zt) + P(Xt ∈ B|Xt = Zt)P (Xt = Zt)]

= 1
2 [P(Zt ∈ B|Xt = Zt)P (Xt = Zt) + P(Zt ∈ B|Xt = Zt)P (Xt = Zt)

+ P(Zt ∈ B|Xt = Zt)P (Xt = Zt) + P(Zt ∈ B|Xt = Zt)P (Xt = Zt)]

= 1
2 [P(Zt ∈ B) + P(Zt ∈ B)]

= P(Zt ∈ B).

Since Zt converges to � in a total variation distance, so does Xt .

Remarks

(1) In the original algorithm, the authors assumed (5) but did not state assumption (6)
explicitly. However, it is pointed out that one must start the algorithm by first obtaining
a sample path from the stationary Langevin diffusion. As a result, X0 has a density
proportional to LN(X), so that (6) is satisfied. Without this initialization step, however,
Xt may not converge to �. On the other hand, Zt converges to � from any starting point
X0. From a practical point of view, the algorithm Zt will provide extra stability on the
convergence as we only have LN(X) ≈ LN(X).

(2) Suppose that our goal is to estimate E(f (X)) where X is distributed as � for some
function f with the property that f (X) = f (X) for all X. Then the two algorithms Xt

and Zt are essentially identical as the ‘flipping’ does not affect the value of f .
(3) Another approach to prove the convergence of a Markov chain is to find an invariant

distribution but it can be shown that � is only an invariant distribution approximately
with respect to Xt ; see [5] for details. If the initial sampled reptile X0 is an outlier, there
is a potential stability problem.

5. No-compromise algorithm

Since the time-step bias may add up and it is only the middle of a reptile that is the most
important, we propose the no-compromise algorithm to stabilize the middle of the reptile.
First, we assume that N is even and M � N/2 to simplify the algorithm. It is artificial to
have even-length reptiles and experience suggests that for the algorithm to be efficient, M is
usually much less than N/2. To improve our samples, we use the original MH algorithm to
generate our samples without assuming micro-reversibility (5). However, if we use � in the
simulation as it is, we can only stabilize the head of the reptiles and the time-step bias may
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still add up near the middle of the reptiles. For this reason, we use the original MH algorithm
for the distribution:

�̂(X) ∝ Wε(xN, xN−1)Wε(xN−1, xN−2), . . . , Wε

(
xN

2 +1, x N
2

)
�0

(
xN

2

)2

×Wε

(
xN

2 −1, x N
2

)
Wε

(
xN

2 −2, x N
2 −1

)
, . . . ,Wε(x0, x1) e−S[X].

Clearly, this distribution is identical to � if we assume micro-reversibility (5). On the
other hand, if the time-step bias is substantial, �̂ will guarantee that the marginal density of
the centre is proportional to the desired density of the limiting Langevin diffusion multiplied
by e−S[X]. The proposed moves are identical to those for Zt but we must recalculate the
acceptance probabilities.

This new algorithm proceeds as follows: let Z be the current state of the Markov chain.
With probability 1/2, a new reptile Y is generated forward from Z with proposal density given
by W 0(Y, Z) from (4) and accepted with probability

A0[Y,Z] = min


1,

Wε

(
zN

2
, z N

2 +1

)
, . . . ,Wε

(
zN

2 +M−1, z N
2 +M

)
�0

(
zN

2 +M

)2
e−S[Y ]

Wε

(
zN

2 +M, zN
2 +M−1

)
, . . . ,Wε

(
zN

2 +1, z N
2

)
�0

(
zN

2

)2
e−S[Z]


 ; (8)

otherwise, Y is generated from Z backward with proposal density given by W 1(Y, Z) from (7)
and accepted with probability

A1[Y,Z] = min


1,

Wε

(
zN

2
, z N

2 −1

)
, . . . ,Wε

(
zN

2 −M+1, z N
2 −M

)
�0

(
zN

2 −M

)2
e−S[Y ]

Wε

(
zN

2 −M, zN
2 −M+1

)
, . . . ,Wε

(
zN

2 −1, z N
2

)
�0

(
zN

2

)2
e−S[Z]


 . (9)

These calculations are similar to that for A in section 3. In the case of A0, the factors
concerning the points between zN

2
and zN

2 +M can no longer be cancelled, due to the change

of direction. Therefore, A0 (and similarly A1) cannot be reduced to A (3). We also note that
if M > N/2, A0 and A1 will become more complicated as there is an additional change of
direction.

6. Numerical examples

We modified the original reptation quantum Monte Carlo algorithm (RQMC) to be Metropolis–
Hastings type (RQMC-MH), section 3, and then one to stabilize the middle of the reptile, the
no-compromise version (RQMC-NC), section 5. In this section, we estimate moments of
the electron-nuclear distribution for the ground-state hydrogen atom and compare the results
obtained for this system using the three algorithms. We account for the time-step bias in the
simulated data by fitting the biased estimates to a polynomial model. Atomic units are used
throughout.

Independent runs were performed for each of the following trial functions, ψ = exp(−αr),
where α = 1.0, 0.9 and 0.4 and r is the distance of the electron from the nucleus. The first
trial function corresponds to the exact ground-state wavefunction, the second is approximate,
but of good quality, and the third is of poor quality.

Algorithmic parameters were set as follows.

• The selected time steps are ε = 0.10 . . . 0.30[0.05] au.
• The ensemble size is given by 100

(
ε0
ε

)
, where ε0 is the largest time-step value (see, e.g.,

[6]).
• The reptile length is given by N = int

[
80

(
ε0
ε

)1.5]
(see, e.g., [6]).

• M = 30. In this simple model, since all three algorithms converge very quickly, there is
no need to randomize the choice of M as in the original algorithm.
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Table 1. Moments of the electron-nuclear distance for the hydrogen atom ground state estimated
from the reptation quantum Monte Carlo algorithms: original [1] (RQMC), Metropolis–Hastings
(RQMC-MH) and no-compromise (RQMC-NC) versions. Quoted are the intercepts and standard
errors from polynomial fits of property versus time step: linear (L), quadratic (Q) or cubic (C). The
trial functions are in the form ψ = exp(−αr), where r is in bohr. Also quoted is their overlap with
the exact wavefunction (S), their variational energy (Evar) and the expected value of moment in
their variational distribution: ψ2 (variational). All entries are given in atomic units. Parentheses
denote one standard error in the last digit recorded.

Algorithm 〈r〉 〈r2〉 〈r3〉 〈1/r〉
α = 1.0 (exact) S = 1.000 Evar = −0.5
RQMC 1.5023(2)Q 3.0115(72)Q 7.573(62)Q 0.9877(26)Q

RQMC–MH 1.5028(43)Q 3.0126(196)Q 7.558(74)Q 0.9849(10)C

RQMC–NC 1.5008(3)L 3.0023(21)L 7.505(14)L 0.9994(15)Q

Variational 1.5 3.0 7.5 1.0

α = 0.9 (good quality) S = 0.996 Evar = −0.405
RQMC 1.5012(5)Q 3.0014(36)Q 7.4994(266)Q 0.9883(7)Q

RQMC–MH 1.5053(18)Q 3.0211(132)Q 7.5800(779)Q 0.9899(37)Q

RQMC–NC 1.5093(129)C 3.0284(262)Q 7.6020(74)L 0.9911(62)L

Variational 1.667 3.704 10.289 0.900

α = 0.4 (crude) S = 0.738 Evar = −0.080
RQMC 1.506(45)Q 3.014(166)Q 7.50(61)Q 1.054(142)Q

RQMC–MH 1.497(17)Q 2.989(80)Q 7.44(35)Q 1.069(44)Q

RQMC–NC 1.509(15)L 3.030(47)L 7.59(15)L 0.951(99)L

Variational 18.75 468.75 14 648.0 0.080

• To control the drift velocity, F ≡ ∇ψ/ψ , that can push the electron too far from the region
of reasonable probability, we truncate the velocity components [7]:

Fi =
{
Fi if |Fi | � 1/ε,

sign[1/ε, Fi] otherwise.
(10)

This truncation vanishes in the ε → 0 limit.

To generate an initial distribution for the no-compromise runs, reptiles were generated
with the Metropolis–Hastings algorithm for several iterations, acceptance probability A (3),
prior to implementing the no-compromise scheme, acceptance probability A0 (8) or A1 (9).

The following moments were estimated at each time step: 〈rn〉, n = ±1, 2 and 3. As the
hydrogen ground state is a nodeless system, in principle, each algorithm will recover the exact
value of the property, independent of α, in the limit of zero-time-step.

Table 1 shows the results from fitting the simulated properties by weighted polynomial
regression in ε. We account for model-bias by selecting the lowest-order polynomial model
whose intercept ± two standard errors overlaps with that of the next higher-order polynomial.

The estimated moments from the no-compromise algorithm (RQMC-NC) are almost
always (see below) within the statistical error of the exact values, even for the crude trial
function, whose variational positive moments are incorrect by one to three orders of magnitude!
Note that, with two exceptions, the no-compromise data are consistently fit by a lower-
degree polynomial than those for the other algorithms, normally with a corresponding gain
in precision. Naturally, the most precise results are generally obtained by employing the
most accurate wavefunctions, as is the case for competing ‘exact sampling’ algorithms (see,
e.g., [8]).



Fast Track Communication F645

Figure 2. Hydrogen atom ground state: simulated inverse first moment of the electron-nuclear
distance for the exact wavefunction. Upper curve: no-compromise reptation quantum Monte
Carlo. Overlapping lower curves: reptation quantum Monte Carlo [1] and Metropolis–Hastings
reptation quantum Monte Carlo. The error bars are smaller than the size of the symbols plotted.

(This figure is in colour only in the electronic version)

The no-compromise estimate of 〈r3〉 for the good-quality wavefunction (α = 0.9) is not
accurate. Here the data have oscillations that cannot be well-fit by a polynomial model. This
same behaviour has occasionally been observed in previous attempts to reduce the time-step
bias in quantum Monte Carlo simulations [7]. In practice, this is not a severe disadvantage,
as often simulations are performed at sufficiently small values of the time step that the bias
can be ignored relative to the statistical error, forgoing the need to extrapolate the data to
zero-time-step.

As is expected, BM’s original algorithm (RQMC) and our Metropolis–Hastings variant
(RQMC-MH) give similar results. Notably, both fail to correctly estimate the inverse moment
for the exact and good-quality wavefunctions. Here, in marked contrast to no-compromise,
the time-step bias is so large that one must extrapolate well beyond the range of the simulated
data, giving an unreliable estimate for the intercept, e.g., figure 2. In this case, one would
need to do simulations at smaller values of ε to get agreement with the true value.
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